Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We analyze the CO-to-H2conversion factor (αCO) in the nearby barred spiral galaxy M83. We present new Hiobservations from the VLA and single-dish GBT in the disk of the galaxy, and combine them with maps of CO(1-0) integrated intensity and dust surface density from the literature.αCOand the gas-to-dust ratio (δGDR) are simultaneously derived in annuli of 2 kpc width fromR= 1–7 kpc. We find thatαCOandδGDRboth increase radially, by a factor of ∼2–3 from the center to the outskirts of the disk. The luminosity-weighted averages over the disk areαCO= 3.14 (2.06, 4.96) andδGDR= 137 (111, 182) at the 68% (1σ) confidence level. These are consistent with theαCOandδGDRvalues measured in the Milky Way. In addition to possible variations ofαCOdue to the radial metallicity gradient, we test the possibility of variations inαCOdue to changes in the underlying cloud populations, as a function of galactic radius. Using a truncated power-law molecular cloud CO luminosity function and an empirical power-law relation for cloud mass and luminosity, we show that the changes in the underlying cloud population may account for a factor of ∼1.5–2.0 radial change inαCO.more » « less
-
Abstract We present a catalog of clouds identified from the12CO (1–0) data of M83, which was observed using the Atacama Large Millimeter/submillimeter Array with a spatial resolution of ∼46 pc and a mass sensitivity of ∼104M⊙(3σ). The almost full-disk coverage and high sensitivity of the data allowed us to sample 5724 molecular clouds with a median mass of ∼1.9 × 105M⊙, which is comparable to the most frequently sampled mass of giant molecular clouds by surveys in the Milky Way (MW). About 60% of the total CO luminosity in M83's disk arises from clouds more massive than 106M⊙. Such massive clouds comprise 16% of the total clouds in number and tend to concentrate toward the arm, bar, and center, while smaller clouds are more prevalent in interarm regions. Most >106M⊙clouds have peak brightness temperaturesTpeakabove 2 K with the current resolution. Comparing the observed cloud properties with the scaling relations determined by P. M. Solomon et al. (1987, hereafter S87),Tpeak> 2 K clouds follow the relations, butTpeak< 2 K clouds, which are dominant in number, deviate significantly. Without considering the effect of beam dilution, the deviations would suggest modestly high virial parameters (medianαvir∼ 2.7) and low surface mass densities (median Σ ∼ 22M⊙pc−2) for the entire cloud samples, which are similar to values found for the MW clouds by T. S. Rice et al. (2016) and M.-A Miville-Deschênes et al. (2017). However, once beam dilution is taken into account, the observedαvirand Σ for a majority of the clouds (mostlyTpeak<2 K) can be potentially explained with intrinsic Σ of ∼100M⊙pc−2andαvirof ∼1, which are similar to the clouds of S87.more » « less
-
Abstract We present an extensive archival analysis of a sample of local galaxies, combining multiwavelength data from GALEX, Spitzer, and Herschel to investigate “blue-side” mid-infrared (MIR) and “red-side” far-infrared (FIR) color–color correlations within the observed infrared spectral energy distributions. Our sample largely consists of the KINGFISH galaxies, with the important addition of a select few including NGC 5236 (M83) and NGC 4449. With data from the far-ultraviolet (∼0.15μm) through 500μm convolved to common angular resolution, we measure the photometry of kiloparsec-scale star-forming regions 36″ × 36″ in size. Star formation rates (SFRs), stellar masses, and metallicity distributions are derived throughout our sample. Focusing on thef70/f500“FIR” andf8/f24“MIR” flux density ratios (colors), we find that a subsample of galaxies demonstrate a strong IR color–color correlation within their star-forming regions, while others demonstrate uncorrelated colors. This division is driven by two main effects: (1) the local strength of star formation (SF) and (2) the metal content of the interstellar medium (ISM). Galaxies uniformly dominated by high surface densities of SF (e.g., NGC 5236) demonstrate strong IR color–color correlations, while galaxies that exhibit lower levels of SF and mixed environments (e.g., NGC 5457) demonstrate weaker or no correlation—explained by the increasing effect of varying ISM heating and metal content on the IR colors, specifically in the MIR. We find large dispersion in the SFR–L8(8μm luminosity) relation that is traced by the metallicity distributions, consistent with extant studies, highlighting its problematic use as an SFR indicator across diverse systems/samples.more » « less
-
We have mapped HCN and HCO+ (J = 1 → 0) line emission toward a sample of seven star-forming regions (with 12+log[O/H] ranging from 8.34 to 8.69) in the outer Milky Way (Galactocentric distance >9.5 kpc), using the 14 m radio telescope of the Taeduk Radio Astronomy Observatory. We compare these two molecular lines with other conventional tracers of dense gas, millimeter-wave continuum emission from dust and extinction thresholds (A V ≥ 8 mag), inferred from the 13CO line data. HCN and HCO+ correlate better with the millimeter emission than with the extinction criterion. A significant amount of luminosity comes from regions below the extinction criterion and outside the millimeter clump for all the clouds. The average fraction of HCN luminosity from within the regions with A V ≥ 8 mag is 0.343 ± 0.225; for the regions of millimeter emission, it is 0.478 ± 0.149. Based on a comparison with column density maps from Herschel, HCN and HCO+ trace dense gas in high column density regions better than does 13CO. HCO+ is less concentrated than HCN for outer Galaxy targets, in contrast with the inner Galaxy sample, suggesting that metallicity may affect the interpretation of tracers of dense gas. The conversion factor between the dense gas mass (M dense) and line luminosities of HCN and HCO+, when integrated over the whole cloud, is comparable to factors used in extragalactic studies.more » « less
-
Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) imaging of molecular gas across the full star-forming disk of the barred spiral galaxy M83 in CO( J = 1–0). We jointly deconvolve the data from ALMA’s 12 m, 7 m, and Total Power arrays using the MIRIAD package. The data have a mass sensitivity and resolution of 10 4 M ⊙ (3 σ ) and 40 pc—sufficient to detect and resolve a typical molecular cloud in the Milky Way with a mass and diameter of 4 × 10 5 M ⊙ and 40 pc, respectively. The full disk coverage shows that the characteristics of molecular gas change radially from the center to outer disk, with the locally measured brightness temperature, velocity dispersion, and integrated intensity (surface density) decreasing outward. The molecular gas distribution shows coherent large-scale structures in the inner part, including the central concentration, offset ridges along the bar, and prominent molecular spiral arms. However, while the arms are still present in the outer disk, they appear less spatially coherent, and even flocculent. Massive filamentary gas concentrations are abundant even in the interarm regions. Building up these structures in the interarm regions would require a very long time (≳100 Myr). Instead, they must have formed within stellar spiral arms and been released into the interarm regions. For such structures to survive through the dynamical processes, the lifetimes of these structures and their constituent molecules and molecular clouds must be long (≳100 Myr). These interarm structures host little or no star formation traced by H α . The new map also shows extended CO emission, which likely represents an ensemble of unresolved molecular clouds.more » « less
-
We report results of a project to map HCN and HCO+ J=1→0 emission toward a sample of molecular clouds in the inner Galaxy, all containing dense clumps that are actively engaged in star formation. We compare these two molecular line tracers with millimeter continuum emission and extinction, as inferred from 13CO, as tracers of dense gas in molecular clouds. The fraction of the line luminosity from each tracer that comes from the dense gas, as measured by AV>8 mag, varies substantially from cloud to cloud. In all cases, a substantial fraction (in most cases, the majority) of the total luminosity arises in gas below the AV>8 mag threshold and outside the region of strong millimeter continuum emission. Measurements of L(HCN) toward other galaxies will likely be dominated by such gas at lower surface densities. Substantial, even dominant, contributions to the total line luminosity can arise in gas with densities typical of the cloud as a whole (n ∼ 100 cm-3). Defining the dense clump from the HCN or HCO+ emission itself, similarly to previous studies, leads to a wide range of clump properties, with some being considerably larger and less dense than in previous studies. HCN and HCO+ have a similar ability to trace dense gas for the clouds in this sample. For the two clouds with low virial parameters, 13CO is definitely a worse tracer of the dense gas, but for the other four, it is equally good (or bad) at tracing dense gas.more » « less
-
Marshall, Heather K.; Spyromilio, Jason; Usuda, Tomonori (Ed.)
An official website of the United States government
